# Update on the WV Miner Location Seismic System

#### By Keith A. Heasley

# Acknowledgements

Co-Investigators at WVU
Dr. Syd S. Peng
Dr Yi Luo

Co-Investigators at WV OMHS&T
Monte Hieb
Randy Harris

# Acknowledgements

• 4 West Mine, Dana Mining Co.

- Eric Grimm Superintendent
- Brian Osborn Sr. Mine Engineer
- Sami Stahle Mine Engineer

#### Weir-Jones Consulting

- Ian Weir Jones Principal
- Bohdan Nedilko Computer Scientist

#### • Hilti, Inc.

- Jim Pinkley Market Manager Mining
- Hayden Whittam Technical Sales Rep.

# Disclaimer

• There were a lot of people contributing to this work.

#### • I AM NOT A SEISMOLOGIST

• The results from the field test are very preliminary.

# Scenario

- An accident has happened in an underground coal mine that has left some number of miners trapped
- All communications systems have been compromised and there is no way to determine if there are survivors or exactly where they are.
- All operations other than ventilation and rescue have ceased at the mine
- The trapped miners have begun signaling on the half-hour by pounding – ten strikes, pause for a count of ten and then ten more strikes, then wait for a half-hour.

# Seismic Location System

# Seismicity

• The waves consists of 2 types:

- P waves primary, compression waves
- S Waves secondary, shear waves
  - Larger amplitude
  - Slower (60% of P wave velocity)

Seismic waves travel through the ground (5000 m/s), water (1450 m/s), and air (330 m/s).







# Background

 In 1970, the National Academy of Engineering (NAE) reported that a seismic system might be capable of detecting and locating trapped miners.

- The miners would strike the roof
- The ground vibrations would be recorded by surface geophones
- Difference in arrival times at different geophones would be used to locate the miners

# Background

 In 1971 and 1972, Westinghouse Electric Co. built and tested such a system.

- Under favorable conditions, the system worked.
- At actual disaster sites, the background noise generated by surface rescue operations masked any miner generated signals.
- Thus a time specifically designated for seismic "listening" must be allocated and enforced.

### **Detection Distances**



**MSHA Seismic Location System** • Developed in the 70's Uses 7 sub-arrays of 7 geophones each. Capable of detecting miners up to 1500 ft deep



### Generator Truck & Equipment Trailer



### **MSHA Seismic** Location System

 Older electronic technology – 70's

• "There have been some modifications over the years, but it is generally agreed that it is in need of replacement"

### Since the 70's

#### Greatly Enhanced Computer Technology

 Digital transmission and storage of seismic signals

 Digital filtering and triggering for enhanced resolution.

#### Seismic Monitoring Systems

Nickels mines in Sudbury Canada
Deep Gold mines of South Africa
Research Tool

Australian coal mines
US coal mines – NIOSH
US limestone mines - NIOSH







#### Pre-Amplifier

#### Geophone

#### Radio Transmitter Site

#### Radio Antennae

Batteries and

Radio Transmitters

#### Solar Panels

#### **Pre-Amplifier**

**Underground Stati** 

#### Geophone

0

#### **Seismic Events at Willow Creek Mine**





- 1





### Present Research

### Mandate

- West Virginia Mine Safety Technology Task Force report (May 29<sup>th</sup>,2006):
- "The director shall provide portable seismic locating systems at each regional office (4) for use in locating trapped miners."
- "Each office will maintain a trained staff that shall, upon notification from Homeland Security Office, be capable of delivering the system to the mine site and to deploy the system immediately and without delay."
- "These persons shall practice with the said systems at least annually at different mine sites."

### Research Objectives

- Determine and Acquire the "best available" seismic location system for trapped miners.
- Conduct field tests to determine the capabilities and limitations of the system
  - Depths, Distances
  - Geology
  - Multiple seams, gob areas, etc.
- Long Term: Help develop the hardware and software for a practical location system for trapped miners.

#### **Technology Requirements**

#### Portable

- Small enough to carry in regular vehicles
- Require no power beyond portable batteries
- Easily Deployed
  - Can be deployed in 60 minutes
  - Can be moved quickly
  - Can interconnect with additional units
  - Rugged enough to survive repeated use.

#### **Technology Requirements**

#### Simple to Operate

- Software should be automated enough for on-site technician
- Produce accurate results in real-time
- Ability to produce maps
- Ability to save and transmit seismic data to consulting seismic experts to assist in interpretation

### Successful Location

• "Location accuracies to within one" or two coal pillars, and even to within dimensions of a working section, when used in conjunction with a good mine map, will be extremely valuable and, in many cases, be more than sufficient to direct the efforts of both in-mine rescue crews and surface drilling crews."

## Field Test Site

### • 4 West Mine, Dana Mining Co. of PA, Inc.

 North of Morgantown and the PA border

 Off the Mt Morris Exit (Exit #1) of interstate 79

## Field Test Site









## Seismic Equipment

#### • Geospace 32CT geophones

#### Terrasciences 24 channel, 24 bit digitizer sampling at 2 kHz

Portable PC & car battery

# Test Protocol

• Signaling devices:

- Hilti DX76, Hilti DX460, Hilti DX462, 8 lb sledge hammer, and crib block
- Signaling Locations:
   Roof bolt, roof rock, and rib

5 impacts, wait 30 seconds, next device

## Test Results

| Device     | Location  | PPV ( <i>u</i> m/s) | Offset (ft) |
|------------|-----------|---------------------|-------------|
| Hammer     | Roof Rock | 60                  | 0           |
| Hammer     | Roof Bolt | 60                  | 0           |
| Crib Block | Roof Rock | 100                 | 0           |
| Crib Block | Roof Bolt | 80                  | 0           |
| Hammer     | Roof Rock | 45                  | 70          |
| Crib Block | Roof Rock | 80                  | 70          |
| Crib Block | Roof Bolt | 80                  | 70          |
| Hammer     | Roof Rock | 25                  | 140         |
| Block      | Roof Rock | 45                  | 140         |

### Seismic Signal









#### Distance

Geophone #6, Z-Axis - Crib Block on Roof Rock - 0 Feet Offset



Geophone #6, Z Axis - Crib Block on Roof Rock - 70 Feet Offset



Geophone #6, Z-Axis - Crib Block on Roof Rock - 140 Feet Offset







Time (secs)

### **Buried - Surface**



### **UnFiltered - Filtered**



## Test Results

- Crib Block on the Roof Rock appeared to be the strongest
  - -> Crib on Roof Bolt
  - -> Hammer on Roof Rock
  - -> Hammer on Roof Bolt

Hilti tools were not very detectable?
 Higher Frequencies?

Good detection out to 140 ft

• Not at 210 ft

### Test Results

Mostly Vertical Ground vibration

- Buried geophones provided about twice the peak particle velocity
  - Better connection?
  - Less soil?

Increase in distance not totally responsible for signal attenuation

- Polarized source?
- Horizontal bedding?

### Conclusions

Use a crib block on the roof rock

• An effective trapped miner, seismic location system is achievable.

# Future Work

#### Thorough analyze data

- Quantify detection strength
- Apply filtering
- Test at "deep" mine
  - Multiple-seam
  - Gob areas

#### • Acquire "state-of-the-art" system

# Seismic Signaling

#### WHEN ESCAPE IS CUT OFF

- 1. BARRICADE
- 2. LISTEN for
  - 3 shots, then ...
- SIGNAL by pounding hard 10 times
- 4. REST 15 minutes, then REPEAT signal until ...
- 5. YOU HEAR 5 shots, which means you are located and help is on the way.









### **Supporting Literature**

- "Mine Safety Recommendations," Report to the Director of the Office of Miners Health, Safety and Training, West Virginia Mine Safety Technology Task Force, May 29<sup>th</sup>, 2006.
- WV Mine Safety Roundtable on Seismic Miner Location, June 28<sup>th</sup>, 2006
- "The Sago Mine Disaster," A Preliminary Report to Governor Joe Manchin III, by J. Davitt McAteer and associates, July, 2006

# Ground Rules

- System hardware suitable for rapid field deployment
- System use present state-of-the-art equipment
- System operates from the surface.
- System is self-contained
- System is compatible with overall rescue effort
- Readily available signal sources
- Likely area of trapped miners is known
- Surface team will have mine maps.

## Field Test Site

 Near the top of a ridge for maximum overburden (441 ft)

 Over the supply entry in an 11 entry main.

# Test Layout

#### • 4 geophone sites in a "T"

#### • A "surface" geophone at each site

# A "downhole" geophone at site 1 & 2

### Successful Location

#### Within 100 ft

- Favorable, Controlled Situations
  Arrival times can be estimated within 1- 5 ms
- Layering and seismic velocities can be specified within 5%

### Signal Improvement

Bandpass Filtering Burial of Sensors Subarrays Size Optimization Delayed or Direct Sum Weighted Sum

**MSHA Seismic Location System** Consists of 3 trucks Equipment truck – recorders and filters Generator truck Trailer – geophone, cables & supplies

### Areas for Development

- Pre-deployed systems
- Data format standardization
- Improved signaling methods
- Signaling from within shelters
- Ideal set of available of geologic information
- Options for remote analysis
- Preloaded mine maps
- Options for use in other emergencies.



# Background

- Outcomes, Westinghouse Electric System tests.
  - System was all underground
  - Signals could be detected up to 1000 ft, but not 1500 ft, away.
  - Point-anchor bolts caused a 100 Hz resonance.
  - A band-pass filter range of 20-200 Hz worked best.
  - Velocities of 4,200-5,000 m/s were observed (with second arrivals at 1,700 m/s).
  - An array of 6 geophones did not work any better than a single phone.